Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 2-[N-(tert-butylsulfinyl)carbamoyl]benzoate

Aurelien Honraedt,,$^{\text {a,b }}$ Sonia Ladeira, ${ }^{\text {a,b }}$ Thierry Berranger ${ }^{\mathbf{c}}$ and Emmanuel Gras ${ }^{\mathrm{a}, \mathrm{b} *}$

${ }^{\text {a }}$ CNRS, LCC, 205 route de Narbonne, F-31077 Toulouse, France, ${ }^{\text {b }}$ Université de Toulouse, UPS, INPT, LCC, F31077 Toulouse, France, and ${ }^{\text {c }}$ Minakem, 145 Chemin des Lilas, F-59310 Beuvry-La-Foret, France
Correspondence e-mail: emmanuel.gras@lcc-toulouse.fr
Received 19 October 2011; accepted 7 November 2011
Key indicators: single-crystal X-ray study; $T=180 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.088$; data-to-parameter ratio $=14.6$.

The title compound, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$, was obtained in quantitative yield by Lewis acid-catalysed alcoholysis of a phtalimide precursor. An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond occurs. In the crystal, centrosymmetric dimers are formed by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the sulfinyl O atoms and the carbamoyl $\mathrm{N}-\mathrm{H}$ group of a neighboring molecule. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions feature in the crystal structure.

Related literature

For a related compound, see: Harpp \& Back (1973). For hydrogen-bond motifs and graph-set notation, see: Etter (1990); Bernstein et al. (1995). For potential applications of the title compound in the synthesis of enones, see: Wang et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S} & \text { Monoclinic, } P 2_{1} / c \\ M_{r}=297.37 & a=11.7881(3) \AA\end{array}$

$$
\begin{aligned}
& b=9.0056(2) \AA \\
& c=16.3296(4) \AA \\
& \beta=120.091(2)^{\circ} \\
& V=1499.91(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=180 \mathrm{~K} \\
& 0.4 \times 0.25 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford-Diffraction Gemini diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)

$$
T_{\min }=0.930, T_{\max }=0.990
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.088$
$S=1.12$
2744 reflections
188 parameters
1 restraint

15187 measured reflections 2744 independent reflections 2334 reflections with $I>2 \mathrm{~s}(I)$ $R_{\text {int }}=0.022$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 101 \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(1)$	$2.00(1)$	$2.857(2)$	$173(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.59	$3.469(3)$	155
$\mathrm{C} 13-\mathrm{H} 13 C \cdots \mathrm{O} 2$	0.98	2.37	$3.345(2)$	174

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Minakem is acknowledged for PhD funding (for AH). Dr J.-C. Daran is warmly acknowledged for his kind help during the preparation of this paper.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2332).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harpp, D. N. \& Back, T. G. (1973). J. Org. Chem. 38, 4328-4334.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, W., Mei, Y., Li, H. \& Wang, J. (2005). Org. Lett. 7, 601-604.

supplementary materials

Ethyl 2-[N-(tert-butylsulfinyl)carbamoyl]benzoate

A. Honraedt, S. Ladeira, T. Berranger and E. Gras

Comment

In the course of our studies on tert-butylsulfinyl phtalimide we have uncovered an unusual access to ethyl 2-(tertbutylsulfinylcarbamoyl)benzoate (I) based on the Lewis acid activation (for example by Samarium (III) salts) of one $\mathrm{C}=\mathrm{O}$ bond of the phtalimide moiety. The title compound has been obtained quantitative yield.

Interestingly (I) exhibits one hydrogen donor (NH) and 5 electronegative atoms featuring available lone pairs that therefore should be able to act as hydrogen acceptors (4 oxygen and one sulfur). The combination of these donors and acceptors can induce a wide variety of hydrogen-bond patterns. A preferred one can be indicative of higher H -bond acceptor ability of one group.

Moreover, these features are of interest for potential applications in organocatalysis. Indeed acidic imide hydrogen atoms have been shown to favour organocatalytic processes in the formation of enones under mild reaction conditions. (Wang et al. 2005)

The crystal structure clearly establishes $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts between the O atoms of the sulfinyl groups and the NH groups since the $\mathrm{N} \cdots \mathrm{O}$ distance falls by more than $0.2 \AA$ below he sum of the van-der-Waals radii of the atoms involved. This is strongly indicative of the presence of two intermolecular hydrogen bonds. From that point, a cyclic dimer is observed with a $R_{2}{ }^{2}(8)$ graph set (Fig. 2). Interestingly although isographic to the sulfinyl group (i.e. it has the same graph set but is chemically different), the carbonyl group of the amide is not involved in any hydrogen bond. This is a clear illustration of the higher polar character of the $\mathrm{S}=\mathrm{O}$ bond making the sulfinyl oxygen a better H -bond acceptor than its carbonyl counterpart.

The $R_{2}{ }^{2}(8)$ graph set is a six bonds ring system exhibiting a chair like conformation in which the two tert-butyl groups are in axial positions and the two carbamoyl units in equatorial positions (Fig. 2). An unexpectedly small distance (in the range of the sum of the van-der-Waals radii) is observed between the oxygen of the carboxyl group of the ester and the nitrogen. The observed conformation might be minimizing the repulsive coulombic interaction and steric repulsions. All bond lengths and angles are otherwise normal. (Allen et al. 1987) Finally as the reaction has been carried out on racemic tert-butylsulfinyl phtalimide, (I) has been obtained as a racemate. It can be seen from the crystal structure that (I) crystallizes as a racemic compound (i.e. the two enantiomers forming dimers in the crystal lattice) indicating that no spontaneous resolution happens (formation of conglomerates).

Experimental

To a suspension of $100 \mathrm{mg}(0.398 \mathrm{mmol})$ of tert-butylsulfinyl phtalimide in 5 ml of ethanol stirred at room temperature is added a solution of $24 \mathrm{mg}(0.04 \mathrm{mmol})$ of samarium(III) trifluoromethanesulfonate in 5 ml of ethanol. After 0.5 h of stirring at room temperature a complete solubilization is observed and a full conversion is confirmed by TLC (cyclohexane/diethyl ether: $2 / 8$). After concentration of the reaction mixture under reduced pressure, the remainings are diluted with 10 ml of dichloromethane and washed twice with water ($2 \times 5 \mathrm{ml}$). The aqueous phases are extracted twice with 10 ml of dichloro-

supplementary materials

methane. The combined organic phases are dried of sodium sulfate and concentrated to dryness under reduced pressure to give 118.1 mg (100% yield) of a white solid. Crystals of (I) suitable for X-ray diffraction were grown overnight at $-20^{\circ} \mathrm{C}$ in a 95/5 Diethyl ether/dichloromethane mixture

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.98 \AA$ (methyl) or $0.95 \AA$ (aromatic) or $0.97 \AA$ (methylene) with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The H attached to nitrogen has been located on difference Fourier and its coordinates were refined using $\mathrm{N}-\mathrm{H}$ restraints of $0.88(1) \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figures

Fig. 1. ORTEP representation of (I) (Mercury; Macrae et al., 2008) with ellipsoids drawn at the 30% probability level.

Ethyl 2-[N-(tert-butylsulfinyl)carbamoyl]benzoate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=297.37$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=11.7881$ (3) \AA
$b=9.0056(2) \AA$
$c=16.3296(4) \AA$
$\beta=120.091(2)^{\circ}$
$V=1499.91(7) \AA^{3}$
$Z=4$
$F(000)=632$
$D_{\mathrm{x}}=1.317 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9878 reflections
$\theta=2.9-29.0^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=180 \mathrm{~K}$
Block, colourless
$0.4 \times 0.25 \times 0.03 \mathrm{~mm}$

Data collection

Oxford-Diffraction Gemini diffractometer

Radiation source: Enhance (Mo) X-ray Source
graphite
ω scan
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.930, T_{\text {max }}=0.990$
15187 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.088$
$S=1.12$
2744 reflections
188 parameters
1 restraint

2334 reflections with $I>2 \mathrm{~s}(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-14 \rightarrow 14$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0508 P)^{2}+0.2576 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.50$ e \AA^{-3}
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Special details

Experimental. 1H NMR (CDCl3, 400 ? MHz): $8.01(\mathrm{~s}, 1 \mathrm{H}) ; 7.61-7.55(\mathrm{~m}, 4 \mathrm{H}) ; 4.40(\mathrm{q}, \mathrm{J} 7.2$? $\mathrm{Hz}, 2 \mathrm{H}) ; 1.40(\mathrm{t}, \mathrm{J} 7.2$? $\mathrm{Hz}, 3 \mathrm{H}) ; 1.33(\mathrm{~s}$, 9H). 13C NMR (CDCl3, 100.6?MHz, T=233?K): 171.8; 165.6; 136.1; 132.5; 130.5; 130.1; 129.1; 127.6; 62.0; 57.8; 22.4; 14.0. MS (DCI, NH3): 315.0; IR (cm-1): 3068; 2971; 1710; 1688; 1428; 1247; 1062; 885;805; 703. MP: 129-131 ${ }^{\circ} \mathrm{C}$.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.9715(2)$	$0.8337(3)$	$0.54534(15)$	$0.0587(6)$
H1A	0.8812	0.8463	0.4934	0.088^{*}
H1B	1.0281	0.8081	0.5195	0.088^{*}
H1C	1.0021	0.9265	0.5813	0.088^{*}
C2	$0.97629(19)$	$0.7127(2)$	$0.60890(14)$	$0.0419(4)$
H2A	0.9451	0.6184	0.5733	0.05^{*}
H2B	1.0673	0.6982	0.6614	0.05^{*}

C3	$0.87361(14)$	$0.65483(17)$	$0.69751(10)$	$0.0262(3)$
C4	$0.79014(14)$	$0.71356(17)$	$0.73504(10)$	$0.0241(3)$
C5	$0.79902(17)$	$0.86253(18)$	$0.76008(12)$	$0.0328(4)$
H5	0.8554	0.9269	0.7507	0.039^{*}
C6	$0.72634(19)$	$0.9176(2)$	$0.79856(13)$	$0.0409(4)$
H6	0.7317	1.0197	0.8146	0.049^{*}
C7	$0.64604(18)$	$0.8236(2)$	$0.81356(12)$	$0.0386(4)$
H7	0.5965	0.8611	0.8403	0.046^{*}
C8	$0.63737(16)$	$0.67464(19)$	$0.78977(11)$	$0.0296(4)$
H8	0.5822	0.6106	0.8006	0.036^{*}
C9	$0.70872(14)$	$0.61845(16)$	$0.75018(10)$	$0.0224(3)$
C10	$0.68801(14)$	$0.45713(16)$	$0.72159(10)$	$0.0224(3)$
C11	$0.68034(15)$	$0.22686(16)$	$0.52516(10)$	$0.0255(3)$
C12	$0.67874(18)$	$0.35133(19)$	$0.46180(12)$	$0.0344(4)$
H12A	0.7299	0.3216	0.4322	0.052^{*}
H12B	0.7172	0.441	0.4998	0.052^{*}
H12C	0.5881	0.3717	0.4125	0.052^{*}
C13	$0.81679(16)$	$0.20074(19)$	$0.60975(12)$	$0.0350(4)$
H13A	0.8755	0.1665	0.5875	0.052^{*}
H13B	0.8121	0.1253	0.6512	0.052^{*}
H13C	0.8505	0.2937	0.645	0.052^{*}
C14	$0.62431(19)$	$0.08368(19)$	$0.46900(13)$	$0.0410(4)$
H14A	0.5337	0.1007	0.4186	0.062^{*}
H14B	0.6261	0.0055	0.5114	0.062^{*}
H14C	0.6772	0.053	0.441	0.062^{*}
N1	$0.63756(12)$	$0.43515(13)$	$0.62653(8)$	$0.0215(3)$
H101	$0.6177(16)$	$0.5099(14)$	$0.5890(10)$	0.026^{*}
O1	$0.89198(11)$	$0.75638(12)$	$0.64578(8)$	$0.0332(3)$
O2	$0.92023(11)$	$0.53207(12)$	$0.71343(9)$	$0.0365(3)$
O3	$0.70681(12)$	$0.35692(12)$	$0.77681(7)$	$0.0352(3)$
O4	$0.44238(10)$	$0.30802(11)$	$0.49210(7)$	$0.0278(3)$
S1	$0.57360(4)$	$0.27051(4)$	$0.57391(2)$	$0.02149(13)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0548(13)$	$0.0834(16)$	$0.0556(12)$	$0.0132(12)$	$0.0408(11)$	$0.0184(12)$
C2	$0.0404(10)$	$0.0503(11)$	$0.0517(11)$	$0.0016(8)$	$0.0355(9)$	$-0.0005(9)$
C3	$0.0211(8)$	$0.0294(9)$	$0.0285(8)$	$-0.0069(6)$	$0.0128(6)$	$-0.0054(6)$
C4	$0.0244(8)$	$0.0265(8)$	$0.0219(7)$	$-0.0029(6)$	$0.0119(6)$	$-0.0028(6)$
C5	$0.0379(9)$	$0.0297(9)$	$0.0376(9)$	$-0.0096(7)$	$0.0239(8)$	$-0.0078(7)$
C6	$0.0533(12)$	$0.0303(9)$	$0.0514(11)$	$-0.0087(8)$	$0.0353(10)$	$-0.0161(8)$
C7	$0.0458(11)$	$0.0393(10)$	$0.0439(10)$	$-0.0035(8)$	$0.0325(9)$	$-0.0124(8)$
C8	$0.0317(9)$	$0.0352(9)$	$0.0277(8)$	$-0.0055(7)$	$0.0192(7)$	$-0.0033(7)$
C9	$0.0215(7)$	$0.0265(8)$	$0.0162(7)$	$-0.0014(6)$	$0.0073(6)$	$-0.0015(6)$
C10	$0.0196(7)$	$0.0265(8)$	$0.0226(7)$	$-0.0011(6)$	$0.0116(6)$	$0.0008(6)$
C11	$0.0301(8)$	$0.0229(8)$	$0.0280(8)$	$0.0013(6)$	$0.0180(7)$	$-0.0009(6)$
C12	$0.0413(10)$	$0.0367(10)$	$0.0358(9)$	$0.0056(7)$	$0.0272(8)$	$0.0076(7)$

sup-4

supplementary materials

C13	$0.0321(9)$	$0.0341(9)$	$0.0390(9)$	$0.0102(7)$	$0.0180(8)$	$0.0038(7)$
C14	$0.0496(11)$	$0.0339(9)$	$0.0465(10)$	$-0.0044(8)$	$0.0294(9)$	$-0.0145(8)$
N1	$0.0263(7)$	$0.0169(6)$	$0.0204(6)$	$-0.0014(5)$	$0.0111(5)$	$0.0015(5)$
O1	$0.0352(7)$	$0.0354(6)$	$0.0407(6)$	$0.0007(5)$	$0.0276(6)$	$0.0012(5)$
O2	$0.0307(6)$	$0.0293(6)$	$0.0570(8)$	$0.0010(5)$	$0.0275(6)$	$-0.0006(5)$
O3	$0.0486(7)$	$0.0286(6)$	$0.0267(6)$	$-0.0010(5)$	$0.0177(5)$	$0.0059(5)$
O4	$0.0244(6)$	$0.0241(5)$	$0.0290(6)$	$-0.0026(4)$	$0.0090(5)$	$-0.0013(4)$
S1	$0.0251(2)$	$0.01767(19)$	$0.0227(2)$	$-0.00142(13)$	$0.01277(16)$	$0.00053(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C2	1.486 (3)
C1-H1A	0.98
C1-H1B	0.98
C1-H1C	0.98
C2-O1	1.451 (2)
C2-H2A	0.99
C2-H2B	0.99
$\mathrm{C} 3-\mathrm{O} 2$	1.2036 (19)
C3-O1	1.3343 (19)
C3-C4	1.493 (2)
C4-C5	1.391 (2)
C4-C9	1.398 (2)
C5-C6	1.384 (2)
C5-H5	0.95
C6-C7	1.380 (3)
C6-H6	0.95
C7- C 8	1.386 (2)
C7-H7	0.95
C8-C9	1.388 (2)
C8-H8	0.95
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
C2- $21-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1A-C1-H1C	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	107.28 (15)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.3
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$	124.39 (15)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	124.08 (14)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	111.52 (13)
C5-C4-C9	119.75 (14)
C5-C4-C3	119.63 (14)
C9-C4-C3	120.52 (13)

C9-C10	1.508 (2)
C10-O3	1.2150 (18)
C10-N1	1.3699 (19)
C11-C12	1.519 (2)
C11-C13	1.524 (2)
C11-C14	1.527 (2)
C11-S1	1.8373 (16)
C12-H12A	0.98
C12-H12B	0.98
C12-H12C	0.98
C13-H13A	0.98
C13-H13B	0.98
C13-H13C	0.98
C14-H14A	0.98
C14-H14B	0.98
C14-H14C	0.98
N1-S1	1.6898 (12)
N1-H101	0.860 (9)
O4-S1	1.4898 (11)
O3-C10-C9	123.02 (13)
N1-C10-C9	113.63 (12)
C12-C11-C13	112.22 (14)
C12-C11-C14	111.10 (13)
C13-C11-C14	110.86 (14)
C12-C11-S1	111.09 (11)
C13-C11-S1	106.33 (10)
C14-C11-S1	104.89 (11)
C11-C12-H12A	109.5
C11-C12-H12B	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
C11-C12-H12C	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5
C11-C13-H13A	109.5
C11-C13-H13B	109.5
H13A-C13-H13B	109.5
C11-C13-H13C	109.5

supplementary materials

C6-C5-C4	120.43 (15)	H13A-C13-H13C	109.5
C6-C5-H5	119.8	H13B-C13-H13C	109.5
C4-C5-H5	119.8	C11-C14-H14A	109.5
C7-C6-C5	119.79 (16)	C11-C14-H14B	109.5
C7-C6-H6	120.1	H14A-C14-H14B	109.5
C5-C6-H6	120.1	C11-C14-H14C	109.5
C6-C7-C8	120.32 (16)	H14A-C14-H14C	109.5
C6-C7-H7	119.8	H14B-C14-H14C	109.5
C8-C7-H7	119.8	C10-N1-S1	122.17 (10)
C7-C8-C9	120.43 (15)	C10-N1-H101	120.2 (11)
C7- $88-\mathrm{H} 8$	119.8	S1-N1-H101	115.6 (11)
C9-C8-H8	119.8	C3-O1-C2	116.06 (13)
C8-C9-C4	119.29 (14)	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{N} 1$	104.78 (6)
C8-C9-C10	116.97 (14)	O4-S1-C11	106.78 (7)
C4-C9-C10	123.68 (13)	N1-S1-C11	100.38 (7)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{N} 1$	123.21 (14)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 101 \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(1)$	$2.00(1)$	$2.857(2)$	$173(2)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.59	$3.469(3)$	155.
$\mathrm{C} 13 — \mathrm{H} 13 \mathrm{C} \cdots \mathrm{O} 2$	0.98	2.37	$3.345(2)$	174.

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y+1 / 2,-z+3 / 2$.

Fig. 1

Fig. 2

